首页> 外文OA文献 >Handwritten Bangla Character Recognition Using The State-of-Art Deep Convolutional Neural Networks
【2h】

Handwritten Bangla Character Recognition Using The State-of-Art Deep Convolutional Neural Networks

机译:使用最先进的手绘Bangla字符识别   卷积神经网络

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In spite of advances in object recognition technology, Handwritten BanglaCharacters Recognition (HBCR) (such as alpha-numeric and special) remainslargely unsolved due to the presence of many ambiguous handwritten charactersand excessive cursive in Bangla handwritings. Even the best existingrecognizers do not lead to satisfactory performance for practical applications,and have much lower performance than those developed for English alpha-numericcharacters. To improve the performance of HBCR, we herein present Banglahandwritten characters recognition methods by employing the state-of-the-artDeep Convolutional Neural Networks (DCNN) including VGG Network, AllConvolution Network (All-Conv Net), Network in Network (NiN), Residual Network,FractalNet, and DenseNet. The deep learning approaches have the advantage ofextracting and using feature information, improving the recognition of 2Dshapes with a high degree of invariance to translation, scaling and otherdistortions. We systematically evaluated the performance of DCNN models onpublicly available Bangla handwritten character dataset called CMATERdb, andachieved the state-of-the-art recognition accuracy when using DCNN models. Suchimprovement fills a significant gap between practical requirements and theactual performance of Bangla handwritten characters recognizers.
机译:尽管对象识别技术取得了进步,但由于孟加拉语手写体中存在许多歧义的手写字符和过多的草书,因此手写孟加拉语字符识别(HBCR)(例如字母数字和特殊字符)仍未解决。即使是最好的现有识别器,也不能为实际应用带来令人满意的性能,并且其性能远低于为英语字母数字字符开发的性能。为了提高HBCR的性能,我们在这里提出了孟加拉语手写字符识别方法,方法是使用最新的深度卷积神经网络(DCNN),包括VGG网络,AllConvolution网络(All-Conv网络),网络中的网络(NiN),残留网络,FractalNet和DenseNet。深度学习方法具有提取和使用特征信息的优势,从而提高了2Dshapes的识别能力,并且对平移,缩放和其他变形具有高度不变性。我们在公开可用的孟加拉语手写字符数据集CMATERdb上系统地评估了DCNN模型的性能,并在使用DCNN模型时获得了最新的识别精度。这种改进填补了孟加拉语手写字符识别器的实际要求和实际性能之间的巨大空白。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号